Tuesday, 15 August 2017

Medio Previsione Esempi Weighted Movimento


Calibrati medie mobili: I principi fondamentali Nel corso degli anni, i tecnici hanno trovato due problemi con la media mobile semplice. Il primo problema è il lasso di tempo della media mobile (MA). La maggior parte degli analisti tecnici ritengono che l'azione dei prezzi. l'apertura o la chiusura del prezzo delle azioni, non è sufficiente su cui dipendere per prevedere correttamente i segnali di acquisto o vendita delle azioni di crossover MAs. Per risolvere questo problema, gli analisti ora assegnare più peso ai dati relativi ai prezzi più recenti utilizzando la media mobile esponenziale livellata (EMA). (Per saperne di più nell'esplorazione esponenziale Pesato media mobile.) Un esempio per esempio, utilizzando un 10-giorni MA, un analista avrebbe preso il prezzo del 10 ° giorno di chiusura e moltiplicare questo numero per 10, il nono giorno per le nove, l'ottavo giorno per otto e così via alla prima della MA. Una volta che il totale è stato determinato, l'analista poi dividere il numero per l'aggiunta dei moltiplicatori. Se si aggiungono i moltiplicatori del 10-day MA esempio, il numero è 55. Questo indicatore è conosciuta come la media mobile linearmente ponderata. (Per la lettura correlata, controllare semplici medie mobili Fai Trends distinguersi.) Molti tecnici sono convinti sostenitori del esponenzialmente lisciato media mobile (EMA). Questo indicatore è stato spiegato in tanti modi diversi che confonde gli studenti e degli investitori. Forse la migliore spiegazione viene da John J. Murphys: Analisi tecnica dei mercati finanziari, (pubblicato dal New York Institute of Finance, 1999): Il modo esponenziale lisciato movimento indirizzi medi sia dei problemi connessi con la media mobile semplice. Innanzitutto, la media esponenziale livellata assegna un peso maggiore ai dati più recenti. Pertanto, è una media mobile ponderata. Ma mentre assegna minore importanza ai dati dei prezzi passati, esso include nel suo calcolo tutti i dati nella vita dello strumento. Inoltre, l'utente può regolare il coefficiente di dare maggiore o minore peso al più recente prezzo giorni, che viene aggiunta ad una percentuale del valore giorni precedente. La somma dei due valori percentuali aggiunge fino a 100. Per esempio, l'ultimo giorni prezzo potrebbe essere assegnato un peso di 10 (.10), che viene aggiunto al giorno precedente peso di 90 (.90). Questo dà l'ultimo giorno 10 del peso totale. Questo sarebbe l'equivalente di una media di 20 giorni, dando l'ultimo giorni prezzo un valore inferiore di 5 (.05). Figura 1: esponenziale Smoothed media mobile È possibile che questo grafico mostra il Nasdaq Composite Index dalla prima settimana di agosto 2000 al 1 ° giugno 2001. Come si può vedere chiaramente, l'EMA, che in questo caso utilizza i dati relativi ai prezzi di chiusura nel corso di un periodo di nove giorni, ha segnali di vendita precisi sul 8 settembre (contrassegnato da un nero freccia verso il basso). Questo era il giorno in cui l'indice rotto sotto il livello 4.000. La seconda freccia nera indica un'altra tappa verso il basso che i tecnici sono stati effettivamente aspettavano. Il Nasdaq non ha potuto generare abbastanza volume e interesse da parte degli investitori al dettaglio per rompere il marchio 3.000. E poi tuffò di nuovo a toccare il fondo a 1619,58 su aprile 4. La fase di rialzo del 12 aprile è contrassegnato da una freccia. Qui l'indice ha chiuso a 1,961.46, e tecnici ha cominciato a vedere i gestori di fondi istituzionali che iniziano a prendere alcuni affari come Cisco, Microsoft e alcuni dei problemi legati all'energia. (Leggi i nostri articoli correlati: Moving Buste media: Raffinazione uno strumento popolare Trading and Moving Average rimbalzo.) Una previsione Esempi di calcolo A.1 Previsioni Calcolo metodi Metodi Dodici delle previsioni di calcolo sono disponibili. La maggior parte di questi metodi prevedono il controllo utente limitato. Ad esempio, potrebbe essere specificato il peso posto sulla recente dati storici o l'intervallo di date di dati storici utilizzati nei calcoli. I seguenti esempi mostrano la procedura di calcolo per ciascuno dei metodi di previsione disponibili, in un insieme identico di dati storici. I seguenti esempi usano gli stessi 2004 e 2005 i dati di vendita per produrre una previsione di vendita del 2006. Oltre al calcolo previsioni, ogni esempio include un 2005 elaborate simulato per un periodo di tre mesi di disinnesto (elaborazione opzione 19 3) che viene poi utilizzata per cento di accuratezza e significa calcoli deviazione assoluta (vendite effettive rispetto alla previsione simulato). A.2 previsione Criteri di valutazione delle prestazioni seconda selezione di opzioni di elaborazione e sulle tendenze ei modelli esistenti nei dati di vendita, alcuni metodi di previsione si esibiranno meglio di altri per una determinata serie di dati storici. Un metodo di previsione che è appropriato per un prodotto può non essere adatto per un altro prodotto. E 'anche improbabile che un metodo di previsione che fornisce buoni risultati in una fase del ciclo di vita dei prodotti rimarrà appropriata durante l'intero ciclo di vita. Si può scegliere tra due metodi per valutare le prestazioni attuali dei metodi di previsione. Questi sono Deviazione assoluta media (MAD) e Percentuale di Precisione (POA). Entrambi questi metodi di valutazione delle prestazioni richiedono dati di vendita storici per un periodo di tempo specificato dall'utente. Questo periodo di tempo è chiamato un periodo di disinnesto o periodi best fit (PBF). I dati di questo periodo è utilizzato come base per raccomandare quale dei metodi di previsione da utilizzare nella fabbricazione proiezione previsioni successivo. Questa raccomandazione è specifico per ciascun prodotto, e può variare da una generazione previsioni a quella successiva. I metodi di valutazione delle prestazioni di due previsioni sono dimostrati nelle pagine seguenti gli esempi dei metodi di previsione dodici. A.3 Metodo 1 - percentuale specificata rispetto allo scorso anno Questo metodo moltiplica i dati di vendita rispetto all'anno precedente di un fattore specificato dall'utente, ad esempio, 1,10 per un aumento del 10, o 0,97 per un 3 diminuzione. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero specificato dall'utente di periodi di tempo per la valutazione delle prestazioni del tempo (opzione di elaborazione 19). A.4.1 Previsione Gamma di calcolo della storia delle vendite da utilizzare per il calcolo del fattore di crescita (elaborazione opzione 2a) 3 in questo esempio. Somma gli ultimi tre mesi del 2005: 114 119 137 370 Somma gli stessi tre mesi del precedente esercizio: 123 139 133 395 Il fattore calcolato 370.395 0,9367 Calcolare le previsioni: gennaio 2005 le vendite 128 0,9367 119.8036 o circa 120 febbraio 2005 le vendite 117 0.9367 109,5939 o circa 110 marzo 2005 le vendite 115 0,9367 107.7205 o circa 108 A.4.2 Previsioni simulato calcolo Somma i tre mesi del 2005 prima di holdout periodo (luglio, agosto, settembre): 129 140 131 400 Somma gli stessi tre mesi per la anno precedente: 141 128 118 387 Il fattore calcolato 400.387 1,033,591731 millions Calcolare previsione simulata: ottobre 2004 le vendite 123 1,033,591731 millions 127,13,178 mila novembre 2004 le vendite 139 1,033,591731 millions 143,66,925 mila dicembre 2004 le vendite 133 1,033,591731 millions 137,4677 A.4.3 percentuale di precisione di calcolo POA (127,13,178 mila 143,66,925 mila 137,4677) (114 119 137) 100 408,26873 370 100 110,3429 A.4.4 medio assoluto MAD Deviazione di calcolo (127,13178-114 143,66 mila novecentoventicinque - 119 137.4677- 137) 3 (13,13178 24,66925 0,4677) 3 12,75624 A.5 metodo 3 - L'anno scorso a questo anno Questo metodo copie dei dati di vendita rispetto all'anno precedente per l'anno successivo. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero di periodi di tempo specificati per la valutazione delle prestazioni del tempo (opzione di elaborazione 19). A.6.1 Previsione calcolo Numero di periodi da includere nella media (elaborazione opzione 4a) 3 in questo esempio per ogni mese di previsione, la media dei precedenti tre mesi di dati. Gennaio previsione: 114 119 137 370, 370 3 123,333 o 123 Febbraio previsione: 119 137 123 379, 379 3 126,333 o 126 marzo previsione: 137 123 126 379, 386 3 128,667 o 129 A.6.2 Previsioni simulato di calcolo ottobre 2005 le vendite (129 140 131) 3 133,3333 novembre 2005 le vendite (140 131 114) 3 128,3333 vendite dicembre 2005 (131 114 119) 3 121,3333 A.6.3 Percentuale di POA precisione di calcolo (133,3333 128,3333 121,3333) (114 119 137) 100 103,513 A.6.4 medio assoluto deviazione Calcolo MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14,7777 A.7 Metodo 5 - Linear approssimazione lineare Approssimazione calcola una tendenza basata su due punti dati di vendita di storia. Questi due punti definiscono una linea di tendenza retta che si proietta nel futuro. Utilizzare questo metodo con cautela, in quanto le previsioni a lungo raggio vengono sfruttate da piccole variazioni in soli due punti dati. Richiesto storia delle vendite: il numero di periodi da includere nella regressione (opzione di elaborazione 5a), più 1 più il numero di periodi di tempo per la valutazione delle prestazioni del tempo (opzione di elaborazione 19). A.8.1 Previsione Calcolo numero di periodi da includere nella regressione (lavorazione opzione 6a) 3 in questo esempio per ogni mese di previsione, aggiungere l'aumento o la diminuzione durante i periodi specificati prima di Holdout periodo dell'esercizio precedente. Media dei tre mesi precedenti (114 119 137) 3 123,3333 Sintesi dei tre mesi precedenti con peso considerati (114 1) (119 2) (137 3) 763 Differenza tra i valori 763-123,3333 (1 2 3) 23 Ratio ( 12 22 32) - 2 14 marzo-2 dicembre value1 DifferenceRatio 232 11.5 valore2 media - rapporto valore1 123,3333-11,5 2 100,3333 meteo (1 n) valore1 valore2 4 11.5 100,3333 146,333 o 146 Previsione 5 11,5 100,3333 157,8333 o 158 Previsione 6 11.5 100,3333 169,3333 o 169 A.8.2 Previsioni simulato di calcolo vendite di ottobre 2004: media dei tre mesi precedenti (129 140 131) 3 133,3333 Sintesi dei tre mesi precedenti con peso considerati (129 1) (140 2) (131 3) 802 Differenza tra il valori 802-133,3333 (1 2 3) 2 ratio (12 22 32) - 2 14 marzo-2 Dicembre value1 DifferenceRatio 22 1 valore2 media - rapporto valore1 133,3333-1 2 131,3333 meteo (1 n) valore1 valore2 4 1 131,3333 135,3333 novembre 2004 vendita media dei tre mesi precedenti (140 131 114) 3 128,3333 Sintesi dei tre mesi precedenti con peso considerati (140 1) (131 2) (114 3) 744 Differenza tra i valori 744-128,3333 (1 2 3) -25,9999 value1 DifferenceRatio -25,99992 -12,9999 Valore2 media - rapporto valore1 128,3333 - (-12,9999) 2 154,3333 previsione a 4 -12,9999 154,3333 102,3333 dicembre 2004 di vendita medio dei tre mesi precedenti (131 114 119) 3 121,3333 Sintesi dei precedenti tre mesi con peso considerato (131 1) (114 2) (119 3) 716 Differenza tra i valori 716 - 121,3333 (1 2 3) -11,9999 value1 DifferenceRatio -11,99992 -5,9999 Valore2 media - rapporto valore1 121,3333 - (-5,9999) 2 133,3333 previsione a 4 (- 5,9999) 133,3333 109,3333 A.8.3 Percentuale di POA precisione di calcolo (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 medio assoluto MAD deviazione di calcolo (135,33-114 102,33-119 109,33-137) 3 21.88 A.9 Metodo 7 - secondo Grado approssimazione lineare di regressione determina i valori di a e B nella formula previsioni Y un bX con l'obiettivo di una linea retta ai dati storici di vendita. In secondo grado di approssimazione è simile. Tuttavia, questo metodo determina valori di a, b, e c nella formula previsioni Y a bX CX2 con l'obiettivo di montare una curva ai dati storici vendite. Questo metodo può essere utile quando il prodotto è nel passaggio tra le fasi di un ciclo di vita. Ad esempio, quando un nuovo prodotto si sposta da introduzione a stadi di crescita, la tendenza di vendita può accelerare. A causa del secondo termine di ordine, la previsione può avvicinarsi rapidamente infinito o scendere a zero (a seconda che il coefficiente c è positivo o negativo). Pertanto, questo metodo è utile solo nel breve periodo. specifiche di previsione: Le formule trova a, b, c per adattarsi una curva a esattamente tre punti. Si specifica n nell'opzione di elaborazione 7a, il numero di periodi di tempo di dati di accumulare in ognuno dei tre punti. In questo esempio n 3. Pertanto, i dati di vendita effettivi per aprile a giugno sono combinati in il primo punto, Q1. Luglio a settembre vengono aggiunti insieme per creare Q2 e ottobre a dicembre somma da Q3. La curva verrà montato tre valori Q1, Q2, Q3 e. storia delle vendite obbligatori: 3 n periodi per il calcolo della previsione più il numero di periodi di tempo necessari per la valutazione delle performance di previsione (PBF). Numero di periodi da includere (elaborazione opzione 7a) 3 in questo esempio Utilizzare i precedenti (3 N) mesi in blocchi di tre mesi: Q1 (apr-Giu) 125 122 137 384 Q2 (LUG-SET) 129 140 131 400 Q3 ( ott-dic) 114 119 137 370 la fase successiva prevede il calcolo dei tre coefficienti a, b, e c per essere utilizzata nella formula previsione Y a bX CX2 (1) Q1 un CX2 bX (dove X 1) abc (2) Q2 un CX2 bX (dove X 2) una 2b 4c (3) Q3 un CX2 bX (dove X 3) un 3b 9c risolvere le tre equazioni simultaneamente per trovare b, a, c: Sottrarre l'equazione (1) dall'equazione (2) e risolvere per b (2) - (1) Q2 - Q1 b 3c Substitute questa equazione per b nell'equazione (3) (3) Q3 3 (Q2 - Q1) - 3c c Infine, sostituire queste equazioni per ae b in l'equazione (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Il metodo secondo grado ravvicinamento calcola a, b, e c come segue: a Q3 - 3 (Q2 - Q1) 370-3 (400 - 384) 322 C (3T - Q2) (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 -23 b (Q2 - Q1) - 3 quater ( 400-384) - (3 -23) 85 Y a bX CX2 322 85X (-23) X2 gennaio a marzo del tempo (X4): (322 340-368) 3 2943 98 per periodo aprile a previsioni di giugno (X5): ( 322 425-575) 3 57,333 o 57 per periodo luglio a settembre del tempo (X6): (322 510-828) 3 1,33 o 1 per ogni periodo ottobre a dicembre (X7) (322 595-11.273 -70 A.9.2 previsioni simulato Calcolo ottobre, novembre e dicembre 2004 le vendite: Q1 (gen - mar) 360 Q2 (apr-giu) 384 Q3 (lug-SET) 400 a 400 - 3 (384 - 360) 328 C (400 - 384) (360 - 384 ) 2 -4 b (384-360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Percentuale di POA precisione di calcolo (136 136 136) (114 119 137) 100 110.27 A.9.4 media deviazione assoluta Calcolo MAD (136-114 136-119 136-137) 3 13.33 A.10 Metodo 8 - metodo flessibile Il metodo flessibile (per cento rispetto al n mesi prima) è simile al metodo 1, cento rispetto allo scorso anno. Entrambi i metodi si moltiplicano i dati di vendita provenienti da un periodo di tempo precedente di un fattore specificato dall'utente, quindi progetto che risultano nel futuro. Nella cento rispetto allo scorso anno il metodo, la proiezione si basa sui dati dello stesso periodo dell'esercizio precedente. Il metodo flessibile aggiunge la possibilità di specificare un periodo di tempo diverso da quello dello stesso periodo dello scorso anno da utilizzare come base per i calcoli. Fattore di moltiplicazione. Ad esempio, specificare 1.15 in opzione di elaborazione 8b per aumentare i dati storici delle vendite precedenti da 15. periodo di Base. Ad esempio, n 3 causerà la prima previsione per essere basato su dati di vendita nel mese di ottobre 2005. Minimo storia delle vendite: il numero specificato dall'utente di periodi indietro al periodo base, più il numero di periodi di tempo necessari per valutare le prestazioni di previsione ( PBF). A.10.4 media assoluta Deviazione Calcolo MAD (148-114 161-119 151-137) 3 30 A.11 Metodo 9 - Weighted Moving Average Il metodo ponderata media mobile (WMA) è simile al metodo 4, media mobile (MA). Tuttavia, con la ponderata media mobile è possibile assegnare pesi diseguali ai dati storici. Il metodo calcola una media ponderata di storia recente vendite per arrivare ad una proiezione per il breve termine. Dati più recenti è di solito un fattore di ponderazione maggiore di dati più vecchi, quindi questo rende WMA più reattiva ai cambiamenti nel livello delle vendite. Tuttavia, previsione pregiudizi e gli errori sistematici ancora si verificano quando la storia delle vendite di prodotti presenta una forte tendenza o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi, piuttosto che per i prodotti nelle fasi di crescita o di obsolescenza del ciclo di vita. n il numero di periodi di storia delle vendite da utilizzare nel calcolo del tempo. Ad esempio, specificare n 3 nell'opzione di elaborazione 9a utilizzare gli ultimi tre periodi come base per la proiezione nel prossimo periodo di tempo. Un grande valore di n (ad esempio 12) richiede più storia di vendita. Essa si traduce in una previsione stabile, ma sarà lenta a riconoscere cambiamenti nel livello di vendite. D'altra parte, un piccolo valore per n (ad esempio 3) risponde rapidamente a cambiamenti nel livello di vendite, ma la previsione può variare così ampiamente che la produzione non può rispondere alle variazioni. Il peso assegnato a ciascuno dei periodi di dati storici. I pesi assegnati dovranno totale a 1.00. Ad esempio, quando n 3, assegnare un peso di 0,6, 0,3, e 0,1, con i dati più recenti che ricevono il maggior peso. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo necessari per valutare le prestazioni di previsione (PBF). MAD (133,5-114 121,7-119 118,7-137) 3 13.5 A.12 Metodo 10 - Linear Smoothing Questo metodo è simile al metodo 9, Weighted Moving Average (WMA). Tuttavia, invece di assegnare arbitrariamente pesi ai dati storici, una formula viene utilizzata per assegnare i pesi che declinano in modo lineare e sommare a 1.00. Il metodo calcola una media ponderata di recente storia delle vendite per arrivare ad una proiezione per il breve termine. Come è vero per tutti lineare in movimento le tecniche di previsione media, pregiudizi meteorologiche e errori sistematici si verificano quando la storia di vendita del prodotto presenta forte tendenza o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi, piuttosto che per i prodotti nelle fasi di crescita o di obsolescenza del ciclo di vita. n il numero di periodi di storia delle vendite da utilizzare nel calcolo del tempo. Questo è specificato nella opzione di elaborazione 10a. Ad esempio, specificare n 3 nell'opzione di elaborazione 10b di utilizzare gli ultimi tre periodi come base per la proiezione nel prossimo periodo di tempo. Il sistema assegna automaticamente i pesi ai dati storici che il declino lineare e somma di 1,00. Ad esempio, quando n 3, il sistema assegna pesi di 0,5, 0,3333 e 0,1, con i dati più recenti che ricevono il maggior peso. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo necessari per valutare le prestazioni di previsione (PBF). A.12.1 Previsione Calcolo numero di periodi da includere nel processo di snellimento media (opzione 10a di elaborazione) 3 in questo esempio rapporto per un periodo precedente 3 (n2 n) 2 3 (32 3) 2 36 0,5 Rapporto per due periodi precedenti 2 (N2 n ) 2 2 (32 3) 2 26 0,3333 .. Rapporto per tre periodi precedenti 1 (n2 n) 2 1 (32) 2 3 16 0,1666 .. Gennaio previsione: 137 0.5 119 13 114 16 127.16 o 127 Febbraio previsione: 127 0.5 137 13 119 16 129 marzo previsione: 129 0.5 127 13 137 16 129,666 o 130 A.12.2 simulato previsione di calcolo dell'ottobre 2004 vendite 129 16 140 26 131 36 133,6666 novembre 2004 di vendita 140 16 131 26 114 36 124 dicembre 2004, le vendite 131 16 114 26 119 36 119.3333 A.12.3 percentuale di precisione di calcolo POA (133,6666 124 119,3333) (114 119 137) 100 101,891 A.12.4 media deviazione assoluta Calcolo MAD (133,6666-114 124 - 119 119,3333-137) 3 14,1111 A.13 Metodo 11 - esponenziale Questo metodo è simile al metodo 10, Linear Smoothing. Nel lineare Smoothing il sistema assegna pesi ai dati storici che il declino lineare. In livellamento esponenziale, il sistema assegna pesi che in modo esponenziale decadimento. L'equazione di previsione di livellamento esponenziale è: prevedono un (precedenti vendite effettive) (1 - a) precedente previsione La previsione è una media ponderata delle vendite effettive rispetto al periodo precedente e le previsioni rispetto al periodo precedente. a è il peso applicato alle vendite effettive del periodo precedente. (1 - a) è il peso applicato alla previsione per il periodo precedente. I valori validi per un range da 0 a 1, e di solito sono compresi tra 0,1 e 0,4. La somma dei pesi è 1.00. un (1 - a) 1 Si deve assegnare un valore per la costante di smoothing, a. Se non si assegna valori per la costante di smoothing, il sistema calcola un valore assunto in base al numero di periodi della storia delle vendite di cui l'opzione di elaborazione 11a. una costante smoothing utilizzato per calcolare la media lisciata per il livello generale o la grandezza delle vendite. I valori validi per un range da 0 a 1. n la gamma di dati storici di vendita da includere nei calcoli. In genere un anno di dati di storia delle vendite è sufficiente per stimare il livello generale delle vendite. Per questo esempio, un valore piccolo per n (n 3) è stato scelto al fine di ridurre i calcoli manuali necessarie per verificare i risultati. livellamento esponenziale in grado di generare una previsione basata su un minimo di un punto di dati storici. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo necessari per valutare le prestazioni di previsione (PBF). A.13.1 Previsione Calcolo numero di periodi da includere nel processo di snellimento media (trasformazione opzione 11a) 3, e il fattore alfa (il trattamento opzione 11b) vuoto in questo esempio un fattore per i più vecchi dati di vendita 2 (11), o 1 quando viene specificato alpha un fattore per il 2 ° più vecchi dati di vendita 2 (12), o alfa quando alfa è specificato un fattore per il 3 ° più vecchi dati di vendita 2 (13), o alfa quando alfa è specificato un fattore per i dati di vendita più recenti 2 (1n) o alfa quando viene specificata alfa novembre Sm. AVG. un (ottobre Actual) (1 - a) Ottobre Sm. AVG. 1 114 0 0 114 dicembre Sm. AVG. un (novembre Actual) (1 - a) Novembre Sm. AVG. 23 119 13 114 117,3333 gennaio Previsione un (Dicembre Actual) (1 - a) Dicembre Sm. AVG. 24 137 24 117.3333 127,16,665 mila o 127 febbraio Previsioni meteo gennaio 127 marzo Previsione gennaio Previsioni 127 A.13.2 Previsioni simulato Calcolo luglio 2004 Sm. AVG. 22 129 129 Agosto Sm. AVG. 23 140 13 129 136,3333 settembre Sm. AVG. 24 131 24 136.3333 133.6666 ottobre 2004 le vendite settembre Sm. AVG. 133.6666 agosto 2004 Sm. AVG. 22 140 140 Settembre Sm. AVG. 23 131 13 140 134 Ottobre Sm. AVG. 24 114 24 134 124 novembre 2004 le vendite settembre Sm. AVG. 124 settembre 2004 Sm. AVG. 22 131 131 Ottobre Sm. AVG. 23 114 13 131 119,6666 novembre Sm. AVG. 24 119 24 119.6666 119.3333 dicembre 2004, le vendite settembre Sm. AVG. 119.3333 A.13.3 Percentuale di POA precisione di calcolo (133,6666 124 119.3333) (114 119 137) 100 101,891 A.13.4 medio assoluto MAD deviazione di calcolo (133,6666-114 124 - 119 119.3333 - 137) 3 14,1111 A.14 Metodo 12 - esponenziale con Trend e la stagionalità Questo metodo è simile al metodo 11, esponenziale in quanto un medio lisciato viene calcolato. Tuttavia, il metodo 12 include anche un termine nell'equazione di previsione per calcolare una tendenza levigata. La previsione è composto da un levigato medi acquisiti regolato per un trend lineare. Quando specificato nell'opzione di elaborazione, la previsione è rettificato per stagionalità. una costante smoothing utilizzato per calcolare la media lisciata per il livello generale o la grandezza delle vendite. I valori validi per la gamma alfa da 0 a 1. b la costante di smoothing utilizzato per calcolare la media lisciato per la componente di trend della previsione. I valori validi per gamma beta da 0 a 1. Se un indice stagionale è applicato al ae b previsioni sono indipendenti l'uno dall'altro. Non hanno da aggiungere a 1,0. Minimo richiesto storia delle vendite: due anni più il numero di periodi di tempo necessari per valutare le prestazioni di previsione (PBF). Metodo 12 utilizza due equazioni di livellamento esponenziale e una media semplice per calcolare una media levigata, una tendenza lisciato, e un semplice fattore di media stagionale. A.14.1 Previsione di calcolo A) Un MAD media esponenziale livellata (122,81-114 133,14-119 135,33-137) 3 8.2 A.15 Valutare le previsioni È possibile selezionare metodi di previsione per generare ben dodici le previsioni per ciascun prodotto. Ciascun metodo di previsione creerà probabilmente una proiezione leggermente diverso. Quando migliaia di prodotti sono previste, non è pratico di fare una decisione soggettiva su quale delle previsioni da utilizzare nei vostri programmi per ciascuno dei prodotti. Il sistema valuta automaticamente le prestazioni per ciascuno dei metodi di previsione selezionati, e per ciascuno dei prodotti previsti. Si può scegliere tra due criteri di performance, media deviazione assoluta (MAD) e Percentuale di Precisione (POA). MAD è una misura di errore di previsione. POA è una misura di bias previsione. Entrambe queste tecniche di valutazione delle prestazioni richiedono effettivi dati storici di vendita per un periodo di tempo specificato dall'utente. Questo periodo della storia recente è chiamato un periodo di dati di controllo o di periodi di misura migliore (PBF). Per misurare le prestazioni di un metodo di previsione, utilizzare le formule di previsione per simulare una previsione per il periodo di dati di controllo storici. Ci sarà solitamente differenze tra i dati di vendita reali e il simulato meteo per il periodo di dati di controllo. Quando più metodi di previsione sono selezionati, questo stesso processo si verifica per ogni metodo. previsioni multipli sono calcolati per il periodo di disimpegno, e rispetto alla storia conosciuta vendita per lo stesso periodo di tempo. Il metodo di previsione che produce la migliore corrispondenza (best fit) tra le previsioni e le vendite effettive durante il periodo di dati di controllo è raccomandato per l'uso nei vostri piani. Questa raccomandazione è specifico per ciascun prodotto, e potrebbe cambiare da una generazione previsioni a quella successiva. Deviazione A.16 medio assoluto (MAD) MAD è la media (o media) dei valori assoluti (o grandezza) delle deviazioni (o errori) tra i dati effettivi e previsti. MAD è una misura della grandezza media di errori aspettarsi, dato un metodo di previsione e la storia dei dati. Poiché i valori assoluti sono utilizzati nel calcolo, errori positivi non annullano errori negativi. Quando si confrontano diversi metodi di previsione, quello con il più piccolo MAD ha dimostrato di essere il più affidabile per tale prodotto per tale periodo di disinnesto. Quando la previsione è imparziale e gli errori sono distribuiti normalmente, vi è una semplice relazione matematica tra MAD e le altre due misure comuni di distribuzione, deviazione standard e errore quadratico medio: A.16.1 Percentuale di Precisione (POA) Percentuale di Precisione (POA) è una misura di bias previsione. Quando le previsioni sono sempre troppo alti, le scorte si accumulano e costi di magazzino aumentano. Quando le previsioni sono sempre due bassi, le scorte sono consumati e il servizio clienti declina. Una previsione che è di 10 unità troppo basso, quindi 8 unità troppo alta, quindi 2 unità troppo alte, sarebbe una previsione imparziale. L'errore positivo del 10 viene annullata da errori negativi di 8 e 2. errore effettivo - Previsione Quando un prodotto può essere conservato in magazzino, e quando la previsione è imparziale, una piccola quantità di scorte di sicurezza può essere utilizzato per tamponare gli errori. In questa situazione, non è così importante eliminare errori di previsione come è generare previsioni imparziali. Tuttavia nel settore dei servizi, la situazione sopra dovrebbe essere visto come tre errori. Il servizio dovrebbe essere a corto di personale nel primo periodo, poi sovradimensionati per i prossimi due periodi. Nei servizi, l'entità degli errori di previsione è di solito più importante di quanto non sia pregiudizi del tempo. La somma per il periodo holdout permette errori positivi per annullare gli errori negativi. Quando il totale delle vendite effettive supera il totale delle vendite di previsione, il rapporto è maggiore di 100. Naturalmente, è impossibile essere più di 100 accurate. Quando una previsione è imparziale, il rapporto POA sarà 100. Pertanto, è più desiderabile essere 95 precisa che essere 110 accurate. I criteri POA selezionare il metodo di previsione che ha un rapporto più vicino al POA 100. script in questa pagina migliora la navigazione dei contenuti, ma non cambia il contenuto in qualsiasi way. Weighted media mobile ponderata Moving luoghi media più importanza sui recenti prezzo si muove di conseguenza, la ponderata media mobile reagisce più rapidamente alle variazioni dei prezzi rispetto alla normale media mobile semplice (vedi: Simple Moving Average). Un esempio di base (3-periodo) di come la media mobile ponderata viene calcolata è la seguente: I prezzi per gli ultimi 3 giorni sono stati 5, 4, e 8. Poiché ci sono 3 periodi, il giorno più recente (8) ottiene un peso 3, il secondo giorno recente (4) riceve un peso di 2, e l'ultimo giorno dei 3 periodi (5) riceve un peso di uno solo. Il calcolo è il seguente: (3 x 8) (2 x 4) (1 x 5) 6 6.17 Il Weighted Moving Valore medio di 6.17 paragona al mobile semplice calcolo medio di 5,67. Si noti come il forte aumento dei prezzi di 8 che si è verificato il più recente giorno era meglio riflette nella Moving di calcolo della media ponderata. Il grafico che segue di Wal-Mart magazzino illustra la differenza visiva tra un 10 giorni ponderata media mobile e 10 giorni di media mobile semplice: Potenziale acquistare e vendere i segnali per la movimentazione indicatore medio ponderato sono discussi in modo approfondito con il Moving indicatore di media semplice (vedi: Simple Moving Average).

No comments:

Post a Comment